首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2201篇
  免费   245篇
  国内免费   260篇
  2024年   2篇
  2023年   45篇
  2022年   32篇
  2021年   36篇
  2020年   56篇
  2019年   77篇
  2018年   79篇
  2017年   94篇
  2016年   95篇
  2015年   76篇
  2014年   78篇
  2013年   101篇
  2012年   53篇
  2011年   68篇
  2010年   76篇
  2009年   121篇
  2008年   148篇
  2007年   151篇
  2006年   151篇
  2005年   141篇
  2004年   121篇
  2003年   92篇
  2002年   83篇
  2001年   71篇
  2000年   55篇
  1999年   56篇
  1998年   67篇
  1997年   51篇
  1996年   39篇
  1995年   44篇
  1994年   42篇
  1993年   48篇
  1992年   30篇
  1991年   33篇
  1990年   35篇
  1989年   16篇
  1988年   34篇
  1987年   18篇
  1986年   20篇
  1985年   9篇
  1984年   8篇
  1983年   5篇
  1982年   8篇
  1981年   12篇
  1980年   4篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1973年   4篇
  1967年   1篇
排序方式: 共有2706条查询结果,搜索用时 15 毫秒
71.
Land-use and land-cover strongly influence soil properties such as the amount of soil organic carbon (SOC), aggregate structure and SOC turnover processes. We studied the effects of a vegetation shift from forest to grassland 90 years ago in soils derived from andesite material on Barro Colorado Island (BCI), Panama. We quantified the amount of carbon (C) and nitrogen (N) and determined the turnover of C in bulk soil, water stable aggregates (WSA) of different size classes (<53 μm, 53–250 μm, 250–2000 μm and 2000–8000 μm) and density fractions (free light fraction, intra-aggregate particulate organic matter and mineral associated soil organic C). Total SOC stocks (0–50 cm) under forest (84 Mg C ha−1) and grassland (64 Mg C ha−1) did not differ significantly. Our results revealed that vegetation type did not have an effect on aggregate structure and stability. The investigated soils at BCI did not show higher C and N concentrations in larger aggregates, indicating that organic material is not the major binding agent in these soils to form aggregates. Based on δ13C values and treating bulk soil as a single, homogenous C pool we estimated a mean residence time (MRT) of 69 years for the surface layer (0–5 cm). The MRT varied among the different SOC fractions and among depth. In 0–5 cm, MRT of intra-aggregate particulate organic matter (iPOM) was 29 years; whereas mineral associated soil organic C (mSOC) had a MRT of 124 years. These soils have substantial resilience to C and N losses because the >90% of C and N is associated with mSOC, which has a comparatively long MRT.  相似文献   
72.
植物抗病性是当前植物病理学中研究的热点和难点之一。着重讨论植物抗病机制、抗病基因的转化方法及其在林木抗病基因工程中的应用情况,并对现阶段林木抗病基因工程中存在的主要问题和应用前景进行了讨论。  相似文献   
73.
The composition of phenols and other aromatic compounds in organic and mineral soil horizons and their respective source vegetation from different climatic zones of the Canadian Prairies were analyzed using CuO oxidation and gas chromatography-mass spectrometry (GC-MS) to investigate the stage of lignin degradation. Parameters based on the CuO oxidation products were calculated for the soils and corresponding vegetation to determine the lignin sources and to monitor the lignin degradation. In addition to the widely used lignin monomer parameters, parameters resulting from lignin-derived phenolic dimers are used for the first time to assess lignin degradation in soils. The composition of lignin-derived phenols (S/V, C/V) in soil closely matches the composition observed in their respective source plants (grass, Aspen, Pine) reflecting the preservation of characteristic lignin patterns in soils. Degradation parameters based on lignin phenols and benzenes derived from tannins or other phenolic biomolecules indicate a progressive degradation from the vegetation to the soil horizons. In addition to commonly used lignin monomer indicators, parameters based on the lignin dimers are applied. Lignin degradation is found to be lowest in the Pine forest, intermediate in the grassland soils and highest in the Aspen-grassland transition soil. Degradation parameters based on non-lignin aromatic derivatives (3,5-dihydroxybenzoic acid, benzenepolycarboxylic acids) demonstrate a similar trend. The lignin from samples in the cooler climate (Black Chernozems) is observed to be more oxidized than in the soils from the warmer climate (Brown Chernozems) suggesting that abiotic processes may be in involved in the alteration of lignin and other phenolic biomolecules in soils. The results indicate that the comparative analysis of CuO oxidation products of soils and source vegetation is a valuable tool to assess the sources and degradation of lignin in soils.  相似文献   
74.
Differences in beech (Fagus crenata) regeneration were quantitatively investigated using power function analysis for the size–class (diameter at breast height, DBH) distribution and juvenile-to-canopy tree (J/C) ratio along a snow gradient throughout Japan. In snowy areas, all species combined, as well as F. crenata alone, showed constant regeneration, with parameter b≈−1.6 for the power function y=ax b (x=DBH, y=density), which is related to the DBH–class distribution. The good fit of the data to the function suggests that beech regenerates constantly with self-thinning patch dynamics. Parameter a, which indicates the abundance of small trunks, was high. Furthermore, the mean J/C ratio was ≈8, i.e., each parent beech tree produced eight juveniles. These results suggest that beech regenerates constantly with gap dynamics in snowy beech forests on the Japan Sea side of Japan (snowy). However, the fit of F. crenata was lower and nonsignificant in some forests in less snowy areas, despite the high fit of all species combined. In these areas, the mean of a was low, and b was often near zero for F. crenata regressions. These results suggest that the abundance of beech was low, and self-thinning was not evident because of the initial low abundance. Moreover, the mean J/C ratio was <1.0, suggesting that juvenile density was lower than that of canopy trees. Thus, the regeneration of F. crenata on the Pacific Ocean side of Japan (less snowy) is rather sporadic. Less snowy conditions may promote seed desiccation, predation of beechnuts and seedlings, and water stress. Lower F. crenata density may also reduce predator satiation and wind pollination.  相似文献   
75.
Mangrove species are well adapted to the harsh ecological conditions of their environment throughout the tropics. However, in the islands of Guadeloupe and Martinique (Lesser Antilles), deficient forest recovery was evidenced in 43 mangrove sites (>1000 m2) affected by apparently natural tree mortality. Such sites were recorded from four chronological sets of aerial photographs between 1950 and 1995, and field-investigated in terms of environment and vegetation characteristics. Given the speculative relationship between the slow-regenerating vegetation and its present environment within non-steady state, disturbed sites, statistical analyses arbitrarily matching physicochemical and biological data were primarily avoided. On one hand, principal component analysis (PCA), combined with an agglomerative hierarchical classification, was performed on environmental, rank-ordered data; on the other hand, multidimensional scaling (MDS) was implemented on vegetation data. Discriminant analyses (DA) further characterized the environment/vegetation interrelationships for each site type. Ultimately, three main types of mortality sites have been distinguished among the study areas. One type clustered the sites showing the lowest salinity values and the highest surge vulnerability whose dominant mangrove species is Rhizophora. Another type presented highly saline sites having clayey soils with pure, stunted, Avicennia stands. The last type consisted of peculiar forest gaps on deep, compact, peat soils. During the rainy season, these sites turned into shallow ponds scattered with living, young Rhizophora and large, standing, dead Avicennia. The authors suggest that this classification may serve as a comprehensive framework to test subsequent hypotheses (hurricanes, droughts…) on the origins of natural massive tree mortality and the causes of recovery deficiency in mangroves of the Caribbean.  相似文献   
76.
We studied the pollination and reproductive success in continuous and fragmented populations of Lapageria rosea, a self-compatible plant endemic to temperate forests of Chile. Pollinator abundance, visitation rates, flower abundance, nectar volume and concentration, pollen germination and fruit and seed production, were compared between continuous forest of 145 ha and four forest fragments of 6, 3, 3, and 1 ha respectively, surrounded by mature pine plantations of Pinus radiata. Flower abundance was lower in three out of four forest fragments relative to continuous forest. Nectar volume and sugar concentration did not differ between flowers in the two habitats. Pollinators of L. rosea, the hummingbird Sephanoides sephaniodes and bumblebee Bombus dahlbomii were less abundant and visited flowers of L. rosea at lower rates in fragments than in continuous forest. In addition, in vitro rates of pollen germination were lower for flowers in forest fragments. The number of seeds per fruit was also lower in forest fragments. We suggest that fragmentation affects the reproductive success of L. rosea, lowering the total numbers of seeds produced and possibly compromising long term persistence of fragmented populations.  相似文献   
77.
Due to the long generation times and high densities, dominant tree species usually did not respond consistently with theoretical predictions to the recent fragmentation. Genetic structures of shrubs and herbs, especially those with low densities, may be more sensitive to forest fragmentation. We studied the genetic structure of a self-compatible subshrub, Ardisia crenata var. bicolor (Myrsinaceae) in a recently fragmented landscape. Ten RAPD primers used for analysis generated a total of 76 bands. We found that A. c. var. bicolor had relatively low species-level (P95 = 63.2%; H = 0.106; Shannon diversity index (SI) = 0.246) and within-population diversity (P95 = 5.3−46.1%; H = 0.026−0.175; SI = 0.032−0.253), and significant population differentiation (GST = 0.445). Significantly positive relationships were found between measures of diversity (P95, H and SI) and the log of estimated population size. No significant relationship was observed between Nei's genetic distance and spatial distance of pairwise populations, indicating no isolation-by-distance. Given most species of forests are shrubs and herbs with short generation times, our observation indicated that distinct genetic consequences of recent fragmentation may be expected for quite a number of plant species.  相似文献   
78.
Since tropical rain forests are widely threatened by conversion to agriculture, even within protected areas, an understanding of recovery processes is important for restoration of forest ecosystems and thus conservation of their biodiversity. Secondary succession following land clearance and crop cultivation was studied in a lower montane rain forest in a protected area of the Venezuelan Cordillera de la Costa Central. Forest recovery was studied using a chronosequence of eight 20 × 20 m plots which represented four forest types ca.10 year-old Secondary Forest, ca. 20 year-old Secondary Forest, ca. 35 year-old (uncultivated) secondary forest and mature forest. Species richness and structural complexity increased during succession, with the oldest secondary forest having a physiognomy comparable to the mature forest. Species diversity was lower in the secondary forests than the mature forest, and their floristic composition was distinct. Four phases are hypothesized to occur in the succession process, each with a distinctive species assemblage: initial colonisation by non-woody vegetation; establishment and canopy closure by short-lived small-seeded woody pioneer species; replacement by longer-lived secondary species; and gradual replacement by mature forest large-seeded climax species. Full recovery of the forests in the protected area is likely to take many years, although it may be assisted through conservation management measures.  相似文献   
79.
We studied the colonisation rate of insects inhabiting fruiting bodies of the wood-decaying fungus Fomitopsis pinicola both within and at different distances (up to 1610 m) from an old-growth forest reserve. The colonisation rate of most species was not affected by the distance from the reserve, and none of the species were affected by the size of local sources of fruiting bodies in the managed forest. We suggest that many insect species inhabiting fruiting bodies of wood-decaying fungi can colonise fruiting bodies at a high enough rate to persist in managed forests of Fennoscandia. However, the colonisation rates of the fungivorous beetle Cis quadridens and the predatory fly Medetera apicalis were negatively affected by distance from the reserve. Cis quadridens is rare in many managed forests, but often quite common at sites with high substrate densities. The rarity of this species may therefore be due to weak ability to colonize distant patches. The same may also be true for M. apicalis, but less is known about the biology of this species. Medetera apicalis was the most common insect predator in the old-growth forest, but it was rare at the largest distances from it in the managed forest. Therefore, it seems likely that the overall pressure from natural enemies significantly declined with distance from the reserve.  相似文献   
80.
Of what value are forest fragments to the conservation of the tropical rain forest diversity for a landscape? We compared the changes in composition, diversity, and plant structure of 15 small (1–76 ha) relatively unprotected forest fragments with those of a large (700 ha) well protected fragment (LWPF) in Los Tuxtlas, Mexico. The trees, shrubs, lianas, palms, and herbs with dbh?≥?2.5 cm were sampled in 1000 m2 at each site. For each ecological group (based on light requirements for germination: primary, secondary, and non-secondary light demanding, NSLD, species) and life form, estimates of species diversity, density, and basal area were analyzed using a stepwise multiple regression to determine whether there were any relationships between these variables and fragment characteristics (size, shape index, and isolation). The composition and plant structure of LWPF were different from those of the small fragments and large trees are absent from the canopy of the latter. Fragment size best explained the differences in composition and plant structure. Species composition in the largest fragments was similar to that of LWPF, but there was no significant difference in total richness between LWPF and the fragments, even though both the richness and abundance of secondary and NSLD species did differ. LWPF had more large primary trees in the canopy, and a greater abundance and basal area of palms and herbs. For tropical rain forest conservation, it is important to maintain the greatest possible number of large fragments and establish policies that prevent forest remnants from being further reduced in size and increasingly isolated from each other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号